PDF下载 分享
[1]王洪彬,陈 艳,李 杰,等.基于CNN的空气中苯浓度预测模型[J].内蒙古工业大学学报,2020,(4):279-285.
 WANG Hong-bin,CHEN Yan,LI Jie,et al.A Prediction Model of Benzene Concentration in Air Based on CNN[J].Journal of Inner Mongolia University of Technology,2020,(4):279-285.
点击复制

基于CNN的空气中苯浓度预测模型

参考文献/References:

[1] Merbitz H,Fritz S,Schneider C.Mobile measurements and regression modeling of the spatial particulate matter variability in an urban area[J].The Science of the Total Environment,2012,438(3):389~403.
[2] Pannu HS,Singh D,Malhi AK.Multi-objective particle swarm optimization-based adaptive neuro-fuzzy inference system for benzene monitoring[J].Neural Computing and Applications,2019,31(7):2195~2205.
[3] García NPJ,Sánchez LF,García GE,et al.PM10 concentration forecasting in the metropolitan area of Oviedo(Northern Spain)using models based on SVM,MLP,VARMA and ARIMA:A case study[J].The Science of the Total Environment,2018,621(15):753~761.
[4] 刘锋,李春燕,谭祥勇等.基于机器学习在空气质量指数中的应用[J].重庆工商大学学报(自然科学版),2017,34(3):82~87.
[5] 杜勤博,陈欢欢,李玥莹等.BP神经网络模型在O3质量浓度预报中的应用[J].广东气象,2019,41(3):29~32.
[6] Ding WF,Zhang JS,Leung Y.Prediction of air pollutant concentration based on sparse response back-propagation training feedforward neural networks[J].Environmental Science and Pollution Research International,2016,23(19):19481~19494.
[7] Zheng Y,Yi XW,Li M,et al.Forecasting Fine-Grained air quality based on big data[C]//Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining-KDD '15.New York:Association for Computing Machinery,2015:2267~2276.
[8] Ong BT,Sugiura K,Zettsu K.Dynamically pre-trained deep recurrent neural networks using environmental monitoring data for predicting PM(2.5)[J].Neural Computing & Applications,2016,27(6):1553~1566.
[9] Li X,Peng L,Yao X,et al.Long short-term memory neural network for air pollutant concentration predictions:Method development and evaluation[J].Environmental Pollution,2017,231(Pt1):997~1004.
[10] Choi H,Kim H,Kim T.Long-term simulation for predicting indoor air pollutant concentration considering pollutant distribution based on concept of CRPS index[J].Building Simulation,2019,12(6):1131~1140.
[11] Xu XH,Yoneda M.Multitask Air-Quality prediction based on LSTM-Autoencoder model[J].IEEE Transactions on Cybernetics,2019.
[12] Huang CJ,Kuo PH.A deep CNN-LSTM model for particulate matter(PM2.5)forecasting in smart cities[J].Sensors,2018,18(7):2220.
[13] 谢崇波,李强.基于GA-GRU环境空气污染物预测研究[J].测控技术,2019,38(7):97~103.
[14] Ioffe S,Szegedy C.Batch normalization:Accelerating deep network training by reducing internal covariate shift[J/OL].ArXiv,2015:1502.03167[2015-03-02].https://arxiv.org/abs/1502.03167.
[15] Vito SD,Massera E,Piga M,et al.On field calibration of an electronic nose for benzene estimation in an urban pollution monitoring scenario[J].Sensors & Actuators B Chemical,2008,129(2):750~757.

备注/Memo

收稿日期:2020-04-27
基金项目:内蒙古自治区科技重大专项(2019ZD015); 内蒙古自治区关键技术攻关计划项目(2019GG273)
作者简介:王洪彬(1989-),男,助教,硕士研究生,研究方向:机器学习,深度学习.
*通讯作者:李雷孝(1978-),男,教授,硕士生导师,研究方向:大数据处理,智能交通.

更新日期/Last Update: 2020-09-27